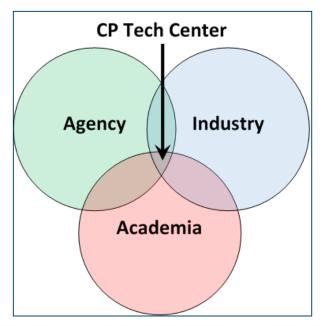


Optimizing Bases, Subbases and Subgrades for Concrete Pavement

March 2, 2021
Michigan Concrete Association Webinar

IOWA STATE UNIVERSITY
Institute for Transportation

National Concrete Pavement Technology Center


Making a difference

through focused collaboration:

- Problem solving
- Implementing the latest and greatest
- Saving money by doing good things
- Building better concrete pavements

www.cptechcenter.org

Taylor, Peter

Smith, Gordon Tritsch, Steven

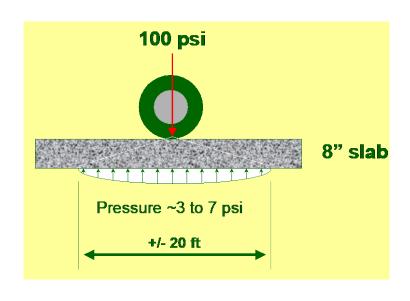
Adam, John

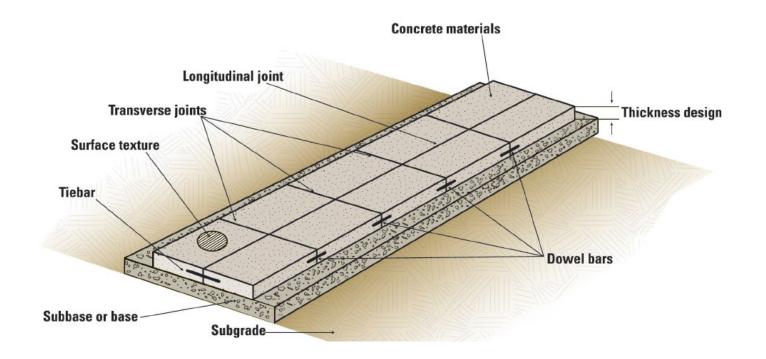
Presenter – Jerod Gross, P.E., LEED AP

- Senior Project Manager
 Snyder and Associates, Inc.
- Co-Author of *Guide to Cement-Stabilized*Subgrade Soils
- Research and Consulting for National Concrete Pavement Technology Center
- ACI Iowa Chapter Past President

jgross@snyder-associates.com (515) 964-2020 www.snyder-associates.com

Webinar Objectives

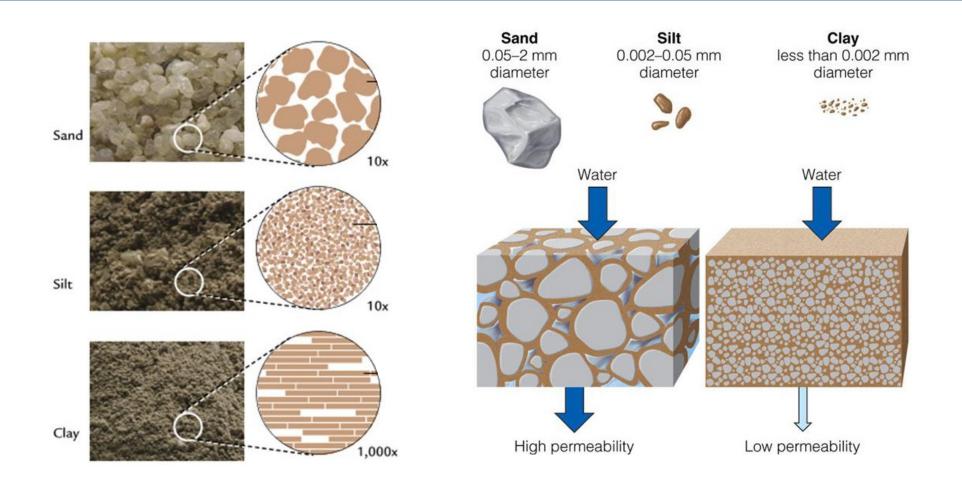

- Concrete pavement support
- Soils / Subgrades
- Subbases
- Geotextiles
- Chemical Stabilization
- Current Research


Pavement Support Basics

Firm, uniform, and nonerodible support is essential for concrete pavements

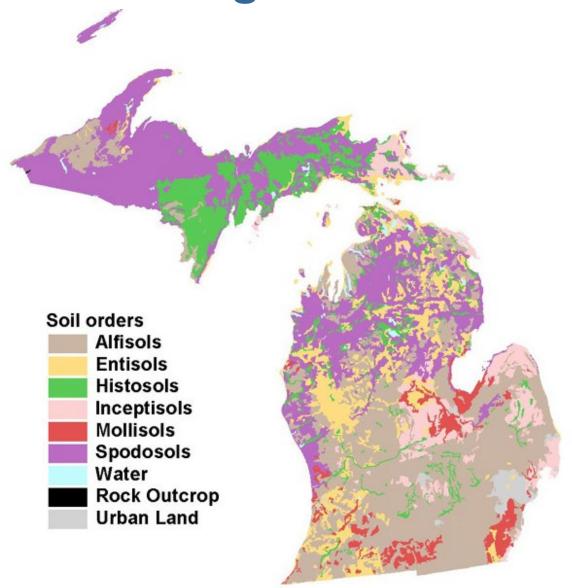
A stable working platform will typically expedite construction operations

Subgrade uniformity is more important than strength



Pavement Support Basics

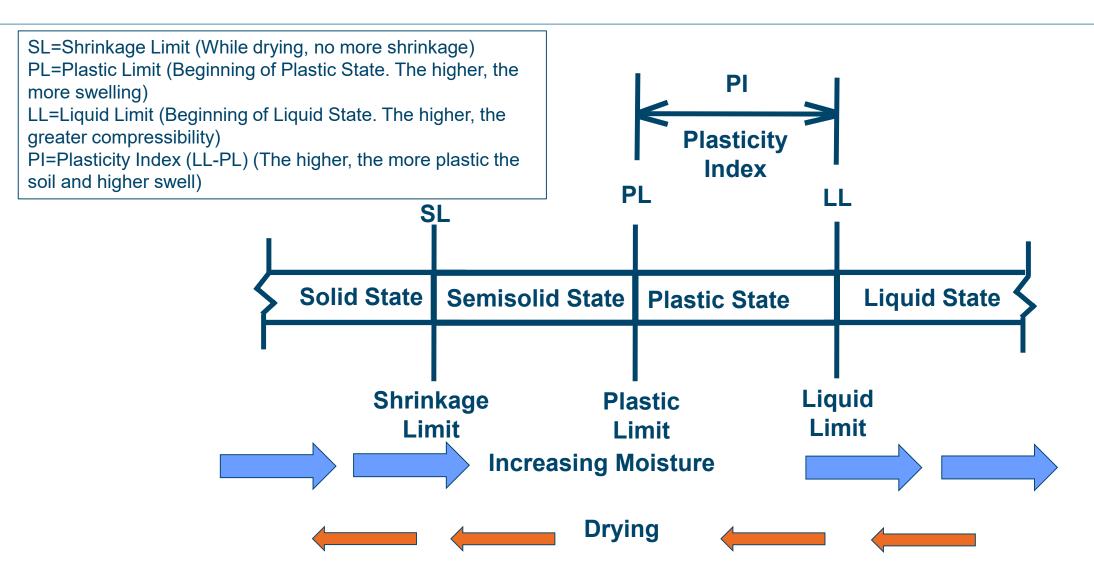
- Uniformity of the subgrade and subbase layers is more important than the strength or stiffness of those layers (ACPA 2008)
- Uniformity of the subgrade and subbase layers:
 - avoids stress concentrations
 - reduces pavement defections from vehicle loadings


Placing a subbase layer over a nonuniform subgrade does little to improve uniformity (White et al., 2021)

Soil Particle Size (by themselves)

Source: Thomson Higher Education

Michigan Soils



Cohesive Soils (Plastic)

The consistency of these soils can range from a dry, solid state to a wet, liquid state with the addition of water.

Eventually, all of the empty pores will be occupied by water and the addition of any more water will cause the system to expand.

Atterburg Limits

Working Platform Problems

High Plasticity = High Plasticity Index = Instability

Expansive clays = Volume change

Weak soils = Poor bearing capacity

Wet/soft subgrade = Poor support

Subbases

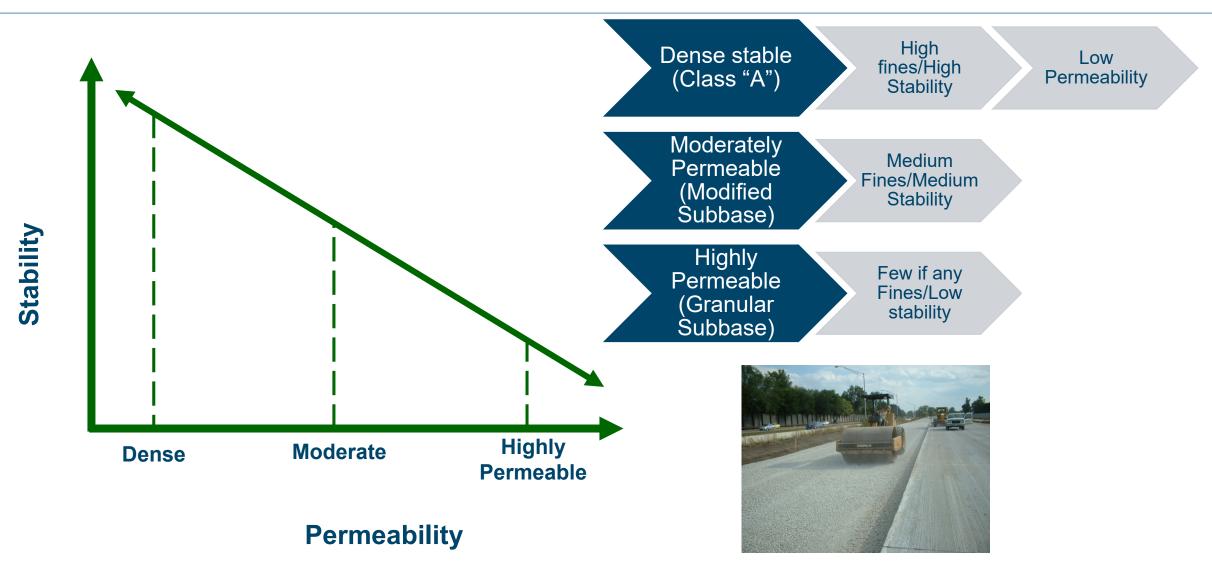
Used when soil is reasonably stable & not excessively wet

Provides a working platform during construction

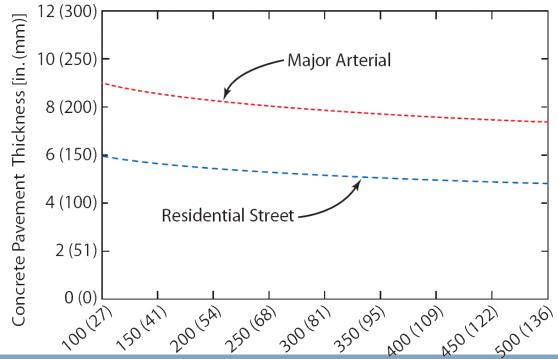
Provides uniformity as a support layer – subgrade must be uniform

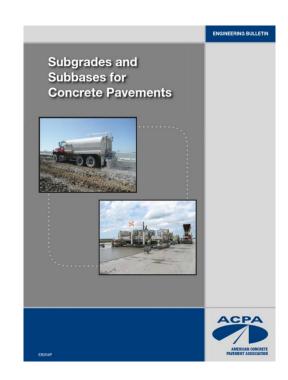
Serves as a drainage system to help drain surface water away from the pavement

Provides a cutoff layer from subsurface moisture (and risk for pumping)

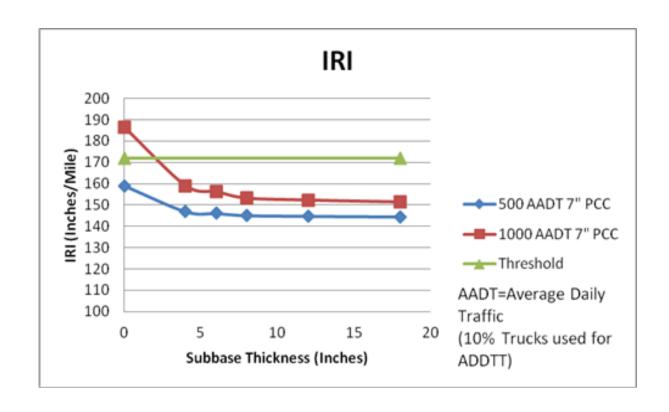

Reduces shrink and swell of high volume change soils

A subdrain and outlet system needs to be provided

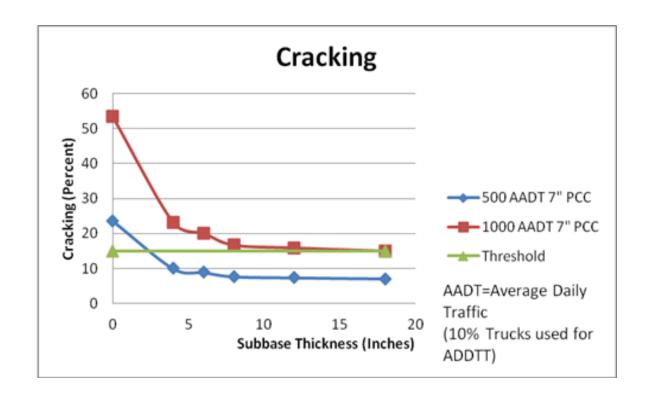



Granular Subbases Stability versus Permeability

Subbases


Concrete pavement design thickness is not real sensitive to support stiffness (modulus of subgrade reaction), so to make a subgrade/subbase stronger or thicker in an attempt to decrease concrete pavement thickness is not always cost-effective. – ACPA 2008

Aggregate Subbase Thickness Limitations (IRI)


MEPDG Failure mode: IRI (in./mi)

Subbase thickness over 5" does not benefit PCC

Aggregate Subbase Thickness Limitations

MEPDG Failure mode: % Cracked Slabs

Subbase thickness over 5" does not benefit PCC

Soil Improvement Options

Subbase is an insurance layer

Scarify and drying

Blending soil

Add geogrid and subbase

Add chemical stabilization

Remove unsuitable and replace with select material in at least upper 2'

Geotextiles

Woven

- High strength support
- Less permeable
- Used to increase support & stabilization (and filtration and separation)

Nonwoven

- Felt-like
- More permeable
- Used for filtration and separation

Made of Polypropylene fibers

Geogrids

Geogrid + aggregate subbase:

- Creates stronger composite structure
- Minimizes subbase fill
- Serves as construction platform
- Extends service life

Source: Geofabrics

<u>Iowa DOT 4196.01B</u>

- Rectangular or Triangular
- Max. Aperture size 2"
- Min. Aperture size 0.5"
- Min. Tensile strength @2% strain 250 lbs/ft
- Min. Ultimate junction strength 800 lbs/ft

Chemical Soil Stabilization Options

Soil Stabilization:

 To amend the undesirable properties of poor native soils to make suitable for construction

Fly Ash

Class C 15-18%

Quick lime

- High quality 3-4%
- Dolomite quicklime 6-8%

Cement Modified Soils (CMS)

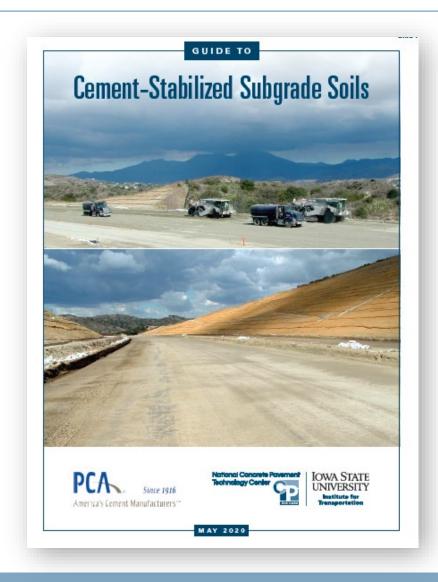
Cement 2-3%

Fly Ash & Lime

Fly Ash

- Some concern for weakening in spring thaw
- May tend to group clay particles together and make more frost susceptible
- Recommend compaction within 2 hours

Quicklime


- Has slower reaction than Fly Ash
- If applied to dry soil, it can expand later

Both create a working platform

Source: Boone County Expo Research Study

Cement-Stabilized Subgrade Soils Guide

Terminology

Cement Modified Soil (CMS): A compacted mixture of pulverized in situ soil, water and small portion of cement that results in an unbounded or slightly bounded material, similar to a soil, but with improved engineering properties.

<u>Cement Stabilized Subgrade (CSS) Soil:</u> A compacted, engineered mixture of pulverized in situ soil, water and moderate proportions of cement (more than CMS) that results in a semi-bound or bound material with structural engineering properties similar to those of granular material.

Cement Modified/Stabilized Soil (CMS/CSS)

Eliminates removal/replace of inferior soils

Reduces construction time (no mellowing)

Works for wide range of soils-granular to clay

Small quantity of cement (2-4%) added to soils to change properties. CSS slightly more than CMS

Lowers plasticity index (PI) and improves volume stability

Improves compactibility & bearing capacity of soil

Forms all-weather work platform

Modification Mechanisms

Mechanism	Time of Modification Processes	Sand, Gravel, Silt (non-cohesive)	Clay (cohesive)	
Cation exchange	Immediate to a few hours		X	Clay particle Negatively charged clay surface Calcium ions Calcium ions Sodium ions Original spacing Company of the compa
Particle restructuring	Immediate to a few hours		X	Unmodified clay particles Clay particles after flocculation / agglomeration
Cementitious Hydration	Major strength gains from 1 to 28 days	X	X	clay particle clay-cement bonds cement hydration products (CSH and CAH)
Pozzolanic Reaction	Strength gains slowly, over months & years		X	cementitious material from cement hydration caloH ₂ clay particle cementitious material from pozzolanic reactions (CSH and CAH) caloH ₂ caloH ₃ calcium hydroxide from cement hydration

Evaluation of Stabilizer Type

Material Type - Including RAP	Well Graded Gravel	Poorly Graded Gravel	Silty Gravel	Clayey Gravel	Well Graded Sand	Poorly Graded Sand	Silty Sand	Clayey Sand	Silt, Silt with Sand	Lean Clay	Organic Silt/Organic Lean Clay	Elastic Silt	Fat Clay, Fat Clay with Sand
USCS ²	GW	GP	GM	GC	SW	SP	SM	SC	ML	CL	0L	МН	СН
AASHT03	A-1-a	A-1-a	A-1-b	A-1-b A-2-6	A-1-b	A-3 or A-1-b	A-2-4 or A-2-5	A-2-6 or A-2-7	A-4 or A-5	A-6	A-4	A-5 or A-7-5	A-7-6
Emulsified Asphalt SE > 30 or Pl < 6 and P ₂₀₀ < 20%	X	X	Х	X	X	х	х	9					
Foamed Asphalt PI < 10 and P ₂₀₀ 5 to 20%	Х		х	Х	х		X						
Cement, CKD or Self-Cementing Class C Fly Ash PI < 20 SO ₄ < 3000 ppm	х	х	X	X	х	х	х	Х	х	х			
Lime/LKD PI > 20 and P ₂₀₀ > 25% SO ₄ < 3000 ppm								х		Х		Х	Х

Clay Soils (A-6, A-7)

High plasticity and cohesiveness

Fine-grained with high porosity

Low permeability

High shrink and swell potential

Expansive when wet

Low bearing strength when moist and easily deforms under load

Difficult to dry out

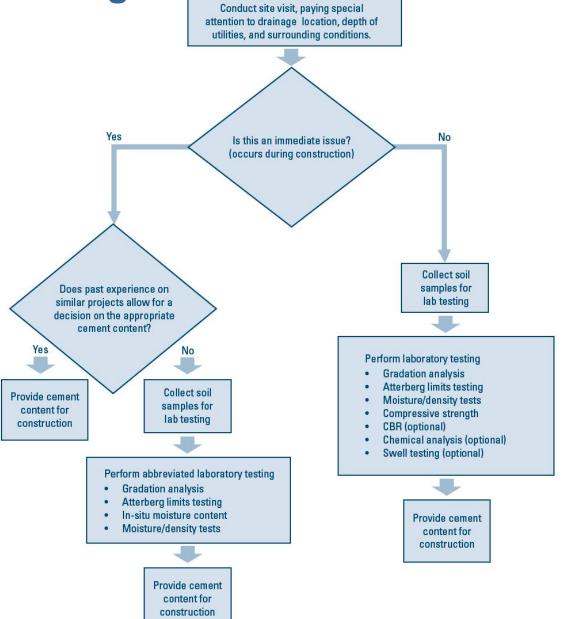
Difficult to compact

Silty and Sandy Soils (A-4, A-3)

Silts (A-4) are fine-grained and difficult to compact

Uniform sands (A-3) have poor gradation and difficult to compact

Low bearing capacity


Low cohesiveness and shear strength

Unstable under construction equipment

Decision Tree - CSS (or CMS) Mix Design

- Design Path (right leg)
- Construction Path (left leg)

Conduct study of past projects and experience. Include USDA review of county survey projects.

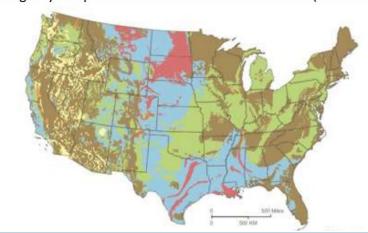
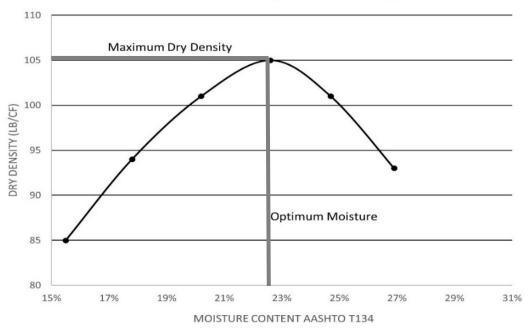

- 1. Determine In Situ Moisture Content and Classify Soil
- 2. Determine Cement Type and Estimated Dosage Rate
- 3. Determine Chemical Compatibility (If Necessary)
- 4. Determine Atterberg Limits of Three Different Cement Content Samples

Table 6A-2.02: AASHTO Soil Classification Chart

General Classification	Granular Materials								Silt-Clay Materials			
	(35% or Less Passing No. 200)							(More Than 35% Passing No. 200)				
	A-1			A-2					('		A-7	
Group Classification	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5, A-7-6	
Sieve analysis, percent passing:												
No. 10	50 max											
No. 40	30 max	50 max	51 max									
No. 200	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min	
Characteristics of fraction passing No. 40												
Liquid limit		-		40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min	
Plasticity limit	6 max		NP	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min	
Usual types of significant constituent materials	Stone fragments, gravel and sand		Fine sand	Silty or clayey gravel and sand				Silty soils		Clayey soils		
General rating as subgrade	Excellent to good						Fair to poor					

Source: AASHTO M 145-2


Swelling Clays Map of the Conterminous United States" (Olive et al., 1989)

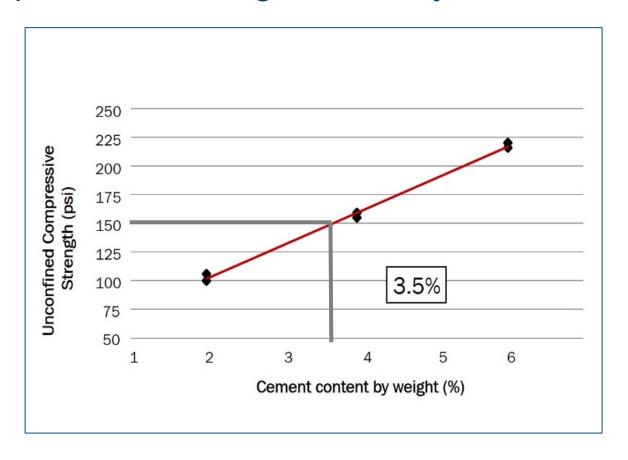
5. Determine Optimum Moisture Content and Maximum Dry Density

- Use cement contents from Atterberg Limits Testing
- AASHTO T 134, Standard Method of Test for Moisture-Density Relations of Soil-Cement Mixtures
- Sample should be molded within one to two hours
- Use laboratory- or commercial-grade soil mixer

Moisture-Density Relationship

cement content,
$$c(\%) = \frac{\text{weight of cement}}{\text{oven} - \text{dry weight of soil/aggregate (excluding cement)}} \times 100$$

$$water \ content, w(\%) = \frac{weight \ of \ water \ in \ mixture}{oven - dry \ weight \ of \ soil/aggregate/cement} \times 100$$


6. Determine Unconfined Compressive Strength

- Immerse specimens in water for 4 hours prior to UCS testing
- At least three different cement contents
 - Minimum two specimens for each cement content
 - OMC from Step 5 used to mold the specimens at various cement contents

Image: Raba Kistner, Inc

7. Plot Unconfined Compressive Strength to Verify Cement Content

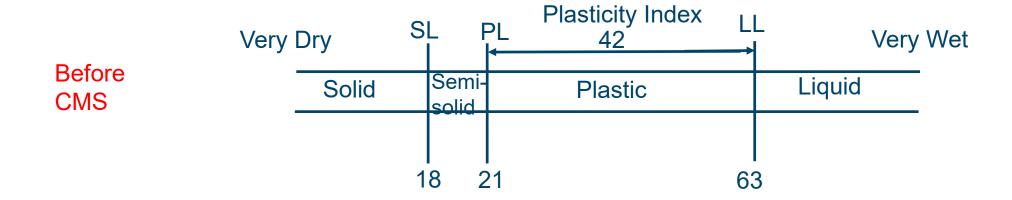
8. Compile Mix Design Report

Untreated soil properties

- in situ moisture content
- gradation
- Atterberg limits
- moisture and density testing (when applicable)

Treated soil properties

- MDD and OMC (AASHTO T 134)
- Atterberg limits
- Wet density of UCS test specimens (before and immediately after the moist curing period)
- Cement type (Type I, Type II, Type I/II, or Type II/V (for high sulfate)
- Recommended cement content as a percentage of dry materials
- UCS at each trial cement content (if applicable)


Effect of 3%Cement on Cohesive Soils

SL=Shrinkage Limit (While drying, no more shrinkage)

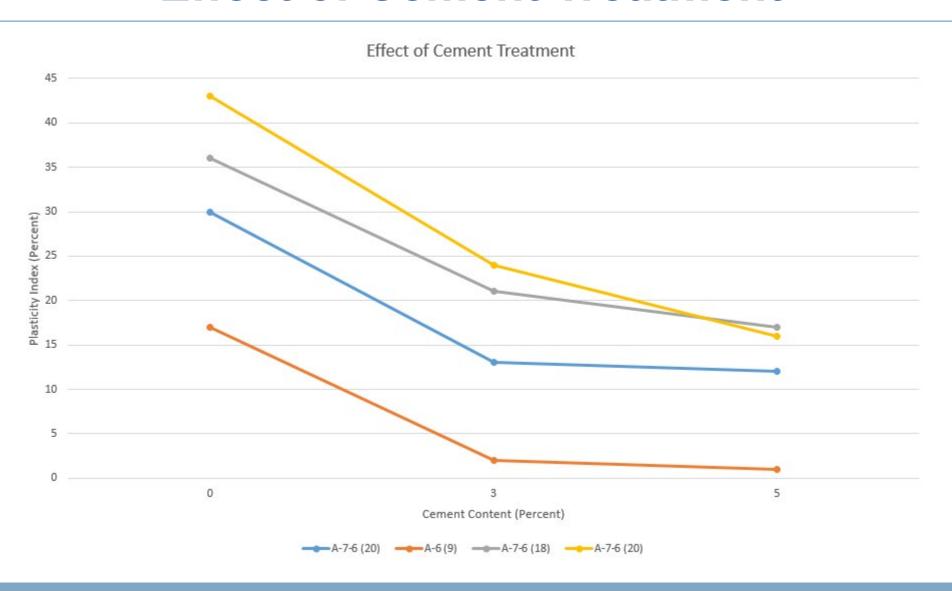
PL=Plastic Limit (Beginning of Plastic State. The higher, the more swelling)

LL=Liquid Limit (Beginning of Liquid State. The higher, the greater compressibility)

PI=Plasticity Index (LL-PL) (The higher, the more plastic the soil and higher swell)

7 days after adding 3% cement

Solid


Plasticity Index
12

Very Wet
SL
PL
LL
Very Wet
Solid

Semisolid Plastic

Liquid

Effect of Cement Treatment

Construction

Construction Process

- Moisture Conditioning (If Necessary)
- Initial Pulverization (If Necessary)
- Preliminary Grading
- Cement Application
- Mixing
- Optimum Moisture Content
- Compaction
- Final Grading
- Curing

photo credit: Corey Zollinger

Construction

- Proof rolling to identify application area
- Moisture conditioning (as necessary)
- Initial pulverization (as necessary)
- Preliminary Grading

Top image credit: Corey Zollinger

Construction – Adding Cement

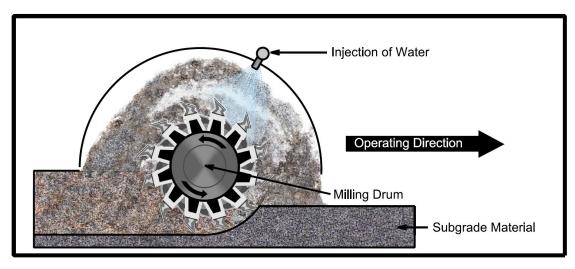
Bulk Cement

- Lowest Cost
- Dusty

Slurry Train – Slurry injected into mixing chamber

Slurry Cement

- Solves dust problem
- Increased Cost


Spreader Trucks

slide credit: Corey Zollinger

Construction - Mixing

Achievement of Optimum Moisture Content

Roadway reclaimer

Image: Jeff Wykoff

Construction - Mixing

Mixing with a reclaimer

Table 5.3. Comparison of typical gradation requirements for CSS, CTB, and FDR


Type of Soil-Cement	Minimum Percent Passing			
	3 in. (75 mm) Sieve	2 in. (50 mm) Sieve	1½ in. (38 mm) Sieve	No. 4 (4.75 mm) Sieve
Cement- stabilized subgrade	_	_	100	60
Cement- treated base	100	95	_	55
Full-depth reclamation	100	95	_	55

image credit: Corey Zollinger

Construction Process - Mixing

Construction - Compaction

Compaction

- If adequate compaction cannot be achieved in a single lift of CSS due to unstable conditions, multiple-lift construction may be necessary
- For silty & clayey soils, initial compaction should be done with a vibratory tamping roller
- For compaction of sandy or gravelly material and for final compaction of silty and clayey soils, a vibratory smooth drum or pneumatic tire roller is used.
- Minimum of 95 percent of maximum dry density
- Final proof roll (optional)

Vibratory padfoot/tamping/sheepsfoot roller

CONSTRUCTION PROCESS - COMPACTION

After placement and mixing, water is added (if dry mix) and the mixture is compacted with traditional compaction equipment and subsequently proof-rolled. Typically, compaction must be completed within 2-4 hours of cement mixing into soil

Construction – Final Steps

Final Grading

- motor grader or similar
- final grade slightly overbuilt for trimming

Curing

- fog water spray
- bituminous emulsion

Image: Virginia DOT

Construction - Weather

Weather Conditions

- Do not construct CSS in standing water
- Do not construct CSS on frozen ground
- Do not apply on windy days

Air temperatures should be 40° F or higher

More information

You can watch a 60 minute webinar on Cement Stabilized Subgrade Soils as well as other webinars at this link:

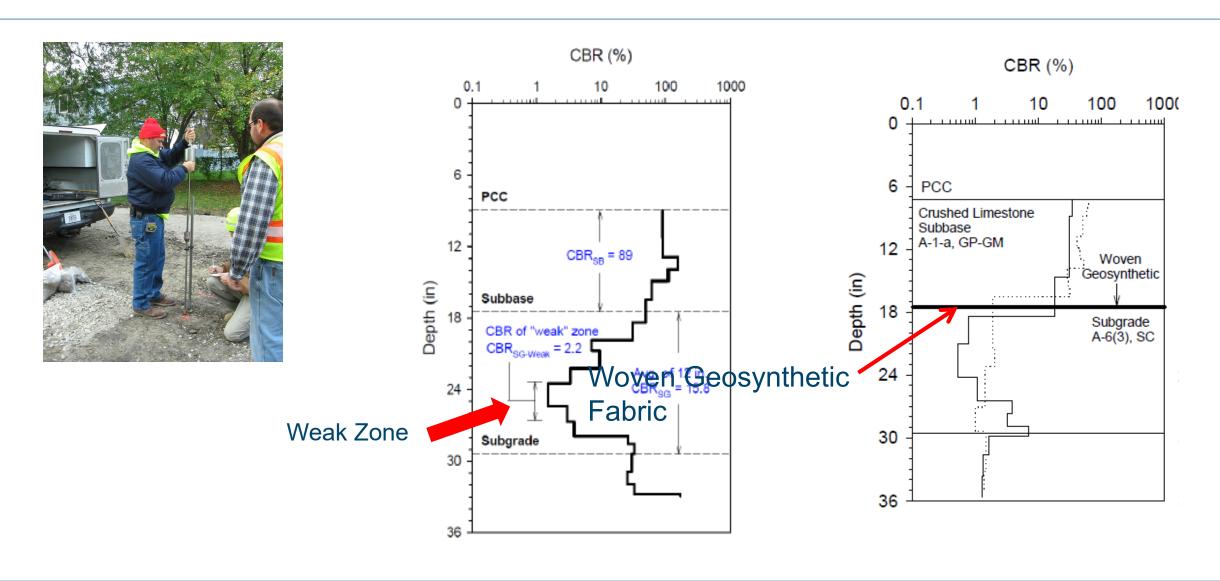
https://www.cement.org/cementconcrete/cement-concrete-applications/pcainfrastructure-webinar-series

Subgrade Testing – Compaction with M & D

Compact to 95% of maximum Standard Proctor Density

Ensure moisture content is within range of optimum moisture to 4% above optimum (SUDAS)

Test soil strength with CBR Test


- Compares soil bearing capacity vs. well graded crushed stone
- High quality crushed stone CBR = 100%
- Typically 3-4 in Iowa

Source: ELE International

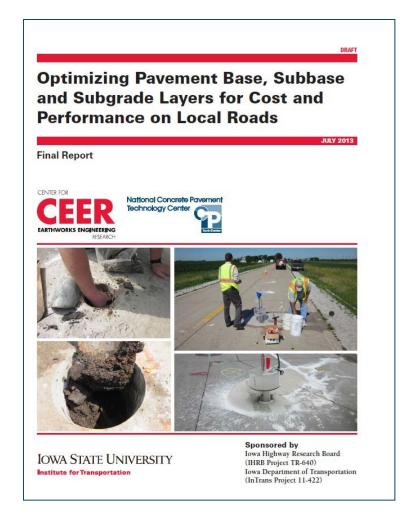
Subgrade Testing - Dynamic Cone Penetrometer (DCP)

Subgrade Testing – Proof Roll

Proof Roll

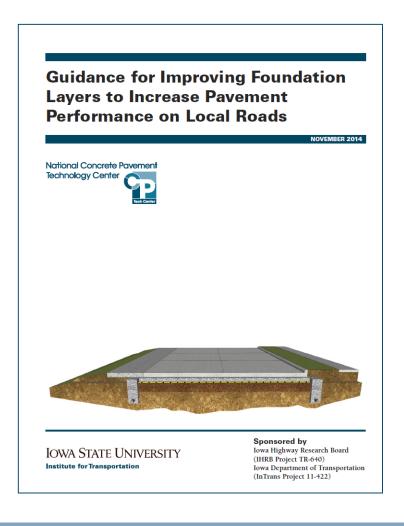
- loaded single axel (20,000 pounds)
- loaded tandem axle (34,000 pounds)
- 10 mph

Unstable if:


- soil wave in front of load
- rutting >2 inches

Source; Geomax Soil Stabilization

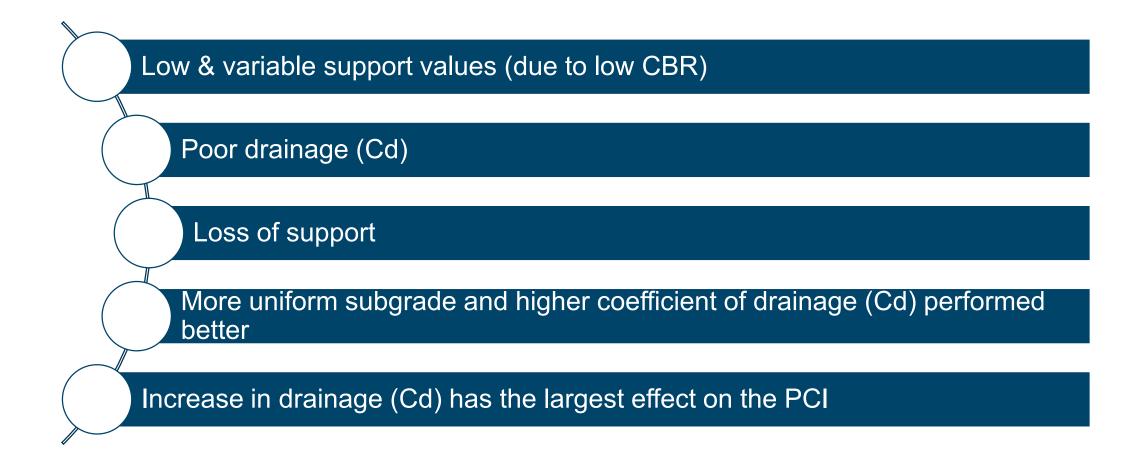
Research Findings on Pavement Support Layers


IHRB TR-640 - Optimizing Pavement Base, Subbase and Subgrade Layers for Cost and Performance on Local Roads

Field Investigation

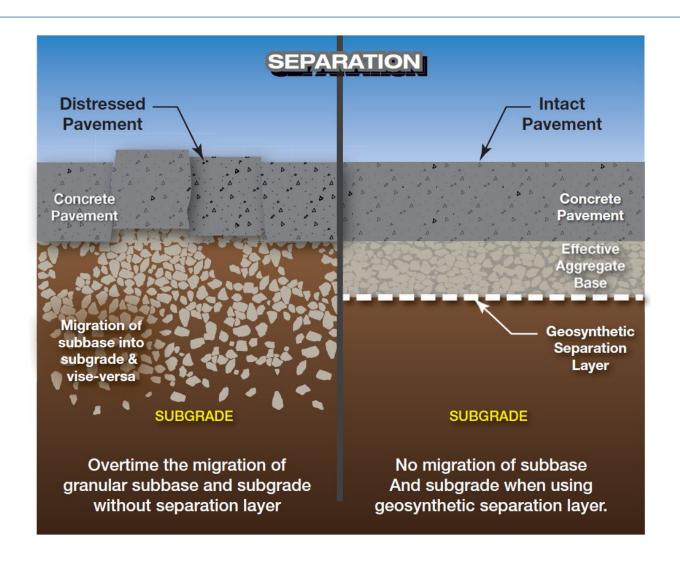
David J. White, Ph.D., P.E. Associate Professor Director, CEER

Pavana KR. Vennapusa, Ph.D. Research Assistant Professor Asst. Director, CEER


IHRB TR-640

Quantitative research relating subgrade to pavement performance

- Age: 30 days to 42 years
- Poor to Excellent PCI: (35 to 92)
- Support Conditions:
 - Natural Subgrade
 - Fly Ash Stabilized Subgrade
 - 6 12 in. Granular Subbase (open graded)
- Pavement: 6 to 11 in. thick
- Traffic (AADT): 110 to 8900


TR-640 Findings

What Impacted Subbase Drainage?

Aggregate subbase loss

Pavement thickness designs do not reflect actual pavement foundation conditions except immediately after construction

Authors: David J. White, Pavana K. R. Vennapusa, Bora Cetin

TPF-5(183) - California, Iowa, Michigan, Pennsylvania, Wisconsin

Chapter 1 – Objectives, Summary of lessons learned, Addressing non-uniformity, New framework for assessment

Chapter 2 – Lessons learned from field

Chapter 3 – Mechanistic characteristics of pavement foundation layers

Chapter 4 – Mechanistic pavement foundation specification

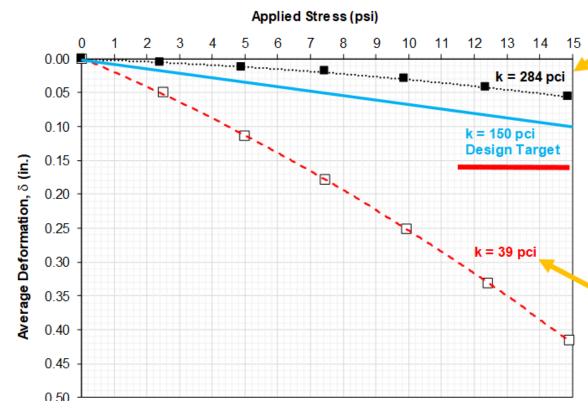
Chapter 5 – Conclusion and recommendations

IMPROVING THE FOUNDATION LAYERS FOR CONCRETE PAVEMENTS:

Lessons Learned and a Framework for Mechanistic Assessment of Pavement Foundations

Final Report | January 2021

National Concrete Pavement Fechnology Center



Sponsored by

Federal Highway Administration Pooled Fund Study TPF-5(183): California, Iowa (lead state), Michigan, Pennsylvania, and Wisconsin

Current Practice Challenges:

- No field verification of engineering parameters (used in foundation layer mechanistic design) is being used for quality acceptance
- While pavement design (AASHTOWare Pavement ME)
 has shown that pavement performance has a low
 sensitivity to the support provided by the foundation
 materials, poor support conditions (non-uniformity,
 permanent deformation) are well documented as affecting
 the long-term performance of pavements
- Non-uniformity exists in newly constructed pavement foundations
- Limited geotechnical testing (1%) used for acceptance
- Modern lab testing to determine resilient modulus does not accurately replicate field conditions

Stress vs. Deformation I-80 Polk County Iowa (12" subbase over subgrade)

Current Practice Challenges:

- Loss of support (foundation layer irreversible plastic deformation) can significantly decrease pavement fatigue life
- More frost heave and thaw testing needed to characterize complex foundation geomaterials, especially stabilized materials.
- Impact of wetting and drying cycles on geomaterials should be evaluated and characterized in terms of volume, stiffness and strength
- Soil water characteristics curves (SWCCs) important if using AASHTOWare Pavement ME (SWCCs have direct impact on post-construction variations in resilient moduli)
- Current practice for selecting design input parameters for pavement foundation materials is largely emperical

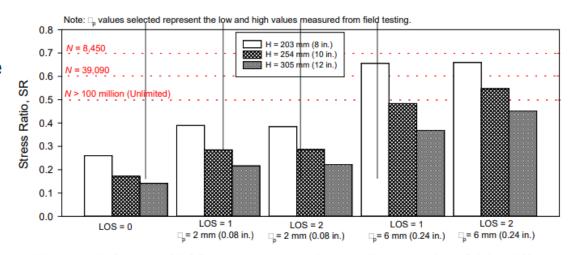


Figure 21. Influence of LOS and magnitude of gap on SR values for LOS for different pavement thickness cases

Ideal Foundation Layer for long-life concrete pavements:

- Uniform support
- Balance between excessive softness and stiffness
- Adequate drainage
- No plastic (permanent) deformation
- Use of sustainable methods and materials
- From state surveys, current specs for foundation layers are a combination of construction method requirements and end-result requirements – these serve a practical function but limit advancement in terms of pavement foundation improvement

I-94 St. Clair and Macomb Counties, Michigan, woven geotextile separator on subgrade

This report proposes a performance-based specification approach that specifies the support conditions provided by the pavement foundation layer in terms of pavement designer's requirements and includes a new requirement for uniformity (coefficient of variation of resilient modulus)

Performance-based construction specification key features:

- Measurement technologies that provide near 100% coverage
- Acceptance and verification testing procedures that measure performance-related parameters that are relevant to the mechanistic design inputs
- Protocols for establishing target values for acceptance based on design
- Quality statements that require achievement of special uniformity
- Protocols for data analysis and reporting that ensures the construction process is field-controlled in an efficient manner

Iowa DOT Research

Iowa concrete Lunch and Learn Series:

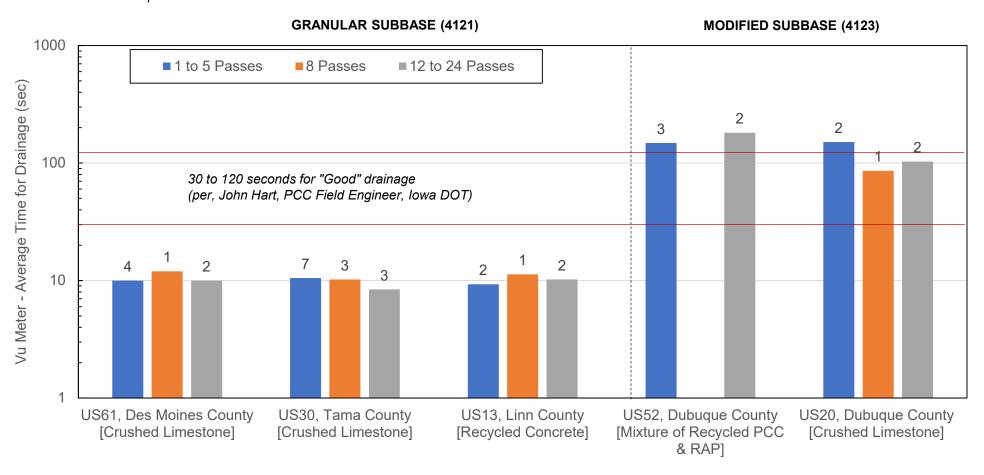
https://cptechcenter.org/concrete-lunch-and-learn/

Subgrade and Subbases: Iowa DOT Research and Next

Steps

Melissa Serio, Earthwork Field Engineer, Iowa DOT

Roller Mapping of Modulus


How does current compaction specification on Granular Subbase affect Drainage Vs. Stiffness

US61, Des Moines County (06/16/2020) Granular Subbase – Crushed Limestone

Drainage Summary from Multiple Project Sites

Number on each bar represents the number of tests

Thank You

Jerod P. Gross, PE, LEED AP Snyder & Associates, Inc. jgross@snyder-associates.com 515-964-2020 office 515-669-7644 mobile

Please contact us with any questions www.cptechcenter.org